Consistent Group Identification and Variable Selection in Regression with Correlated Predictors.
نویسندگان
چکیده
Statistical procedures for variable selection have become integral elements in any analysis. Successful procedures are characterized by high predictive accuracy, yielding interpretable models while retaining computational efficiency. Penalized methods that perform coefficient shrinkage have been shown to be successful in many cases. Models with correlated predictors are particularly challenging to tackle. We propose a penalization procedure that performs variable selection while clustering groups of predictors automatically. The oracle properties of this procedure including consistency in group identification are also studied. The proposed method compares favorably with existing selection approaches in both prediction accuracy and model discovery, while retaining its computational efficiency. Supplemental material are available online.
منابع مشابه
Efficient Clustering of Correlated Variables and Variable Selection in High-Dimensional Linear Models
In this paper, we introduce Adaptive Cluster Lasso(ACL) method for variable selection in high dimensional sparse regression models with strongly correlated variables. To handle correlated variables, the concept of clustering or grouping variables and then pursuing model fitting is widely accepted. When the dimension is very high, finding an appropriate group structure is as difficult as the ori...
متن کاملBayesian forecasting with highly correlated predictors
This paper considers Bayesian variable selection in regressions with a large number of possibly highly correlated macroeconomic predictors. I show that by acknowledging the correlation structure in the predictors can improve forecasts over existing popular Bayesian variable selection algorithms.
متن کامل0 Component Selection in the Additive Regression Model
Similar to variable selection in the linear regression model, selecting significant components in the popular additive regression model is of great interest. However, such components are unknown smooth functions of independent variables, which are unobservable. As such, some approximation is needed. In this paper, we suggest a combination of penalized regression spline approximation and group v...
متن کاملUncorrelated Lasso
Lasso-type variable selection has increasingly expanded its machine learning applications. In this paper, uncorrelated Lasso is proposed for variable selection, where variable de-correlation is considered simultaneously with variable selection, so that selected variables are uncorrelated as much as possible. An effective iterative algorithm, with the proof of convergence, is presented to solve ...
متن کاملCorrelated Component Regression: Re-thinking Regression in the Presence of Near Collinearity
We introduce a new regression method – called Correlated Component Regression (CCR) – which provides reliable predictions even with near multicollinear data. Near multicollinearity occurs when a large number of correlated predictors and relatively small sample size exists as well as situations involving a relatively small number of correlated predictors. Different variants of CCR are tailored t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America
دوره 22 2 شماره
صفحات -
تاریخ انتشار 2013